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MOTION OF k RAREFIED GAS IN A PLANE CHANNEL IN THE PRESENCE 

OF CONDENSATION ON THE CHANNEL WALLS 

F. M. Sharipov and T. V. Shchepetkina UDC 533.6.011.8 

We examine the flow of a rarefied gas through a broad range of Knudsen numbers 
under the action of small pressure and temperature differences in a plane short 
channel, with provision made for the processes of evaporation and condensation 
at the channel walls. 

The processing of mass transfer, in which provision is made for evaporation and conden- 
sation on the walls, have been studied in numerous papers, such as, for example [1-5]. The 
transport of gas between plane infinite plates is the subject of [i], while [2, 3] deal 
with the motion of a gas in an infinite pore and a number of simplify&ng assumptions have 
been made here; in [4] we find a study of the flow in a finite channel, but the gas flow 
rate and its dependence on the length of the channel and the flow regime have not been dealt 
with, and in this particular case the boundary conditions are specified for the ends of 
the channel. In [5] we find a study of the kinetics involved in the mass transfer that 
occurs under the action of a small pressure difference in a plane finite pore, with considera- 
tion given to vaporization and condensation at the walls and at the bottom of the pore. 
The boundary conditions are specified directly at the inlet to the pore. In the present 
paper we investigate the heat and mass transfer that arises under the action of small pres- 
sure and temperature drops across a finite channel, with consideration given to the evapora- 
tion and condensation that occurs on the channel walls over a broad range of Knudsen numbers. 
Unlike the earlier-cited studies, the flow of gas is treated here not only within the chan- 
nel, but also in the regions externally adjacent to the channel. 

Let us take a look at a plane channel of length s of height a, and infinite in width, 
as shown in Fig. i, connecting two vessels containing the identical gas. At a rather large 
distance from the channel, the gas within the vessels is maintained under equilibrium condi- 
tions at pressures PI and P2 and temperatures T l and T2, respectively. Here the distribution 
functions are in the form of absolute Maxwellians: 

Pi ( m 13/2 ( m~ ) ' i= l' ~" 
V~= 'kT~ , 2nkT-----~. exp ~kT~ 

The walls of each of the vessels exhibit temperatures of T l and T2, respectively. It is 
assumed that all of the molecules reaching the walls of the vessels are diffusely reflected, 
and absorbed as they impinge on the channelwalls. The walls, in this case, radiate the 
molecules with the following distribution function: 
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[w=[1  [ 1-~  x P1 ~ - i (  mv~2kT1 
5 T2 - -  T1 

T 1 ] "  ) 2 

Physically this means that the temperature of the channel walls and the pressure of the 
vaporizing gas, i.e., the pressure of the saturated vapor at the temperature of the wall, 
change linearly from T 1 to T 2 and from PI to P2, respectively. Such a situation is encoun- 
tered, for example, when the surface of the channel is coated with a thin film of a vaporizing 
liquid. It is assumed that the drops in pressure and temperature are small [P2 - P I [ / P 1  ~ i, 
IT 2 - TII/T I ~ I. We have to find the flow field and the flows of mass and heat for arbitrary 
Knudsen numbers. 

In order to achieve a rigorous solution for the formulated problem, it is necessary 
to use the Boltzmann equation, but with arbitrary rarefaction of the gas the complex struc- 
ture of the collision i.n,tegral makes this impossible. Therefore, the collision integral 
is replaced with one that is simpler, representative, but retaining the fundamental proper- 
ties of the Boltzmann equation. In this particular study we have used the so-called third- 
order S model [6], which provides for adequate description of the processes of heat and 
mass transfer simultaneously: 

f+ = I0 [ 

f 0 = n  (__ 

rt := 

o f =  v - -  --P ( f + -  f), 
Or "q 

I - 6  15 n 

m ~3/eexp(_Wz) ,  W =  l/_--__~_- m_ ( v - - u ) ,  
2nkT ] V 2~:r 

~ [dv, nu = ~ v[dv, T =  2 ~ my z fdv, 
3k 2 

1 
---- = - -  nlrl V t ~. P nkT, ~] 2 

Let us introduce dimensionless quantities: c = (m/2kT1)I/2v, u '  = (m/2kT1)i/2U~or 
the velocities of the molecules and the gas, respectively, q' = [i/2nlm(2kTl/m)S/2] -~ q =S 
for the heat flux density, x' = x/a, y' = ya for the coordinates, and Jk' = [(m/2kT1) ~/2/ 
knla]J k, Aks = [(m/2kTl)l/2/knla]AkE for the thermodynamic flows and kinetic coefficients. 
The primes for the dimensionless quantities will subsequently be dropped. 

In view of the smallness of the drops in pressure and temperature, we can represent 
the unknown distribution function in the form 

f (r, r =: i + h (r, r ih/<< 1. 

Having substituted this form of the distribution function into the kinetic equation, ~e 
obtain the following linearized S model: 

ah 
r = t,h--Sh, 

@r 

wl~re  ~ = ,/"~'a/2X i s  t h e  r a r e f a c t i o n  p a r a m e t e r ,  i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  Knudsen rumber .  
The moments o f  t h e  d i s t r i b u t i o n  f u n c t i o n  in  t h i s  c a s e  can be w r i t t e n  in  t h e  form 

I v ;  u ;  r q ] =  h h  ~ - r  c;  ~ , __ dc. 

Here  v = (P - P 1 ) / P l ,  z = (T - T 1 ) / T  x. Having i n t e g r a t e d  t h e  l i n e a r i z e d  S model  a long  t h e  
c h a r a c t e r i s t i c ,  we o b t a i n  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  t h e  p e r t u r b a t i o n  f u n c t i o n :  

h = ~ ( L o h )  exp - - - -  - - - 6 ~ o e x p  
o \ Cp ] Cp Cp 
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Fig. I. The geometry of the problem. 

Fig. 2. The kinetic coefficients App, ApT , and ATT (dimen- 
sionless quantities) as functions of the reciprocal of the 
Knudsen number 6 (a dimensionless quantity) for various channel 
lengths. The solid curves, L = i; the dashed curves, L = 5. 

where c v = c x + % ;  s is the distance from the point having the coordinates (x, y) in the 
direction -Cp; s o is the distance to the boundary of the flow field in this same direction; 
hbo is the perturbation function set by the boundary conditions. Substitution of the last 
expression from the perturbation function in the determination of the moments of the distribu- 
tion function gives us the following system of integral equations: 

2 g  S o 

Mi(r) = ! S J" K~j(r, r')M,(r')dsdcp + I-L2~ i=, o o zr .[ % (r, to) d~, 
0 

(i) 

where  1 ~ < i ~ < 6 ,  r' = (x',  y ' )  = ( x - - s c o s r  V - - s s i n  r 
h e r e :  

We have introduced the following notation 

M1 = '~ (r), M~ = u~ (r), 

Ms  = uy (r ) , .M~ = ~ (r), M~ = q~ (r), M6 = qv (r), 

2 (2Is + I 0  cos tp, Kn = (2& + Io), K~., = -~- 

K~l = 11 cos q~, K2~. = 21~ cos" cp, K~a = (18 - -  211) cos % 

4 2 (I~ - -  Io), K~.~ = ~ (I~--  21,)  cos~ ~, K~I = 

4 2 5 
K, ,  = -~- (Is - -  I~) cos ~, Ka~ = I ,  - -  2I~ + ~ -  Io, 

K,5 = ~ ~ y  ~ 5 -  213 + I1 cos r K~I = K~, ~ ,  -- ~ -  ,~, 

Ks~ = (15 - -  413 -'1- ~ 2 I1)c~ c~ 

Kii=Kii_~tg~, K~i =K~_l i tgq~ ,  1<~ i~<6 ,  j = 3 ;  6, 
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I~0 i I K~ (r, ro) v,v -t- ~ Ki5 , - 

COS 4 

0 

s = (r - -  r') 1/2, ~ = arctg  y -  y '  
X - - X '  9 

Yo/ y s o s in(p/ '  

for x 0' = 0; L and Y0' > 1/2, Y0' < -1/2, 

2 T~ - -  T1 
v .  = - -  ( e x p ( - - ~ ) h ( c ) d c ,  ~== 

T----'~ ' cn <OJ 

for 0 ~ x 0' ~ L and Y0' = • 

x~ P~--P1 , T w =  Xo ~__ T~--TI 

System (i) is solved numerically by the Krylov-Bogolyubov method [7]. The calculations 
have been performed on a computer with an error of no more than 2% for a channel length 
of L = 1 and 5 in a 5 number range from 0.02 to 2. The calculation accuracy is moni~=ored 
through comparison of the calculation results with various grids. 

Let us analyze the problem under consideration from the standpoint of the thermodyna- 
mics of irreplaceable processes [8]. We will introduce two independent thermodynamic forces 
Xp = AP/P l, X T = AT/T I. It has been demonstrated in [9] that in this case the thermodynamic 
flows are of the form 

Jp = - -  ( uxdY --2 dx 1 | 

- -  1 / 2 x = L  Y = ' ~  

Jr = -- [ dy -- 2 dx I 
- - 1 / 2  " x = L  0 f t = ' ~  

(2) 

We can see from relationships (2) that when the nonpenetration conditions are violated the 
thermodynamic flow Jp consists of two terms: the first term has the sense of a flow of 
mass through the inlet section of the channel. The second term is associated with the flow 
of mass to the channel walls, integrated with weight over the entire length, and dependent 
on the distribution of pressure in the vaporized gas. The thermodynamic flow JT has an 
analogous form, and here, in the place of the gas velocity, we have the density of the heat 
flux, and replacing the pressure distribution of the vaporized gas, we have the wall tempera- 
ture distribution. Only with these thermodynamic flows will the entropy yield in the system 
have the form o = JpXp + JTXT, which corresponds to the conclusions from the thermod3~amics 
of irreversible processes [8]. 

In view of the linearity of the problem, the moments of the distribution function can 
be expanded into the following component: 

[~; u; ~; q]:=[~P; uP; ~P; qP] Xp + [vr; ur; Tr; q r lXr .  (3) 

Substituting (3) into (2) gives us a linear relationship for the flows dp and d T to the 
forces Xp and XT: 

Jp = App X p + A p r X r ,  

J r  = Arp Xp + A r t  X r  �9 

The expressions for the kinetic coefficients App, ApT , ATp , and ATT will be anaiogou~; to 
the expressions for flows (2). Here the first subscript corresponds to the flow, whSle 
the second subscript corresponds to the component of the distribution-function moment: sub- 
stituted into the expressions. 
relationship is valid [9]: 

For nondiagonal kinetic coefficients the following reciprocity 
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Fig. 3. The mass flow under the action of the pressure differ- 
ence Gp (a dimensionless quantity) (a) and of the temperature 
difference G T (a dimensionless quantity) (b) as a function of 
the reciprocal of the Knudsen number 6 (a dimensionless quan- 
tity) at various sections of the channel. The solid curves 
represent the inlet section to the channel, while the dashed 
curves represent the central portion of the channel. 

TABLE i. The TPD Index as a Function of 6 

6 L--~I b.~-5 

0 
0,02 
0,04 
0,1 
0,2 
0,4 
1 
2 

0,5 
0,488 
0,477 
0,452 
0,420 
0,370 
0,274 
0,187 

0,5 
0,481 
0,465 
0,426 
0,376 
0,315 
0,216 

APt = Ar~,  ( 4 )  

and t h i s  can  be d e r i v e d  f rom t h e  g e n e r a l  c o n c e p t s  o f  t h e  l i n e a r  t h e r m o d y n a m i c s  o f  i r r e v e r s i b l e  
processes [8]. It was shown in [9] that for this particular system relationship (4) is 
a consequence of the self-conjugacy of the linearized Boltzmann collision operator and the 
reciprocity of the scattering center of the gas molecules at the walls of the channels and 
the vessels. The boundary conditions which we have adopted provide for the satisfaction 
of the second condition. In the kinetic equation, in the place of the exact collision opera- 
tor, in this particular paper we make use of the model operator Lsh. It is not difficult 
to prove that the model operator is also self-conjugate, so that its utilization in the 
place of the more exact operator must therefore ensure fulfillment of relationship (4). 
Analysis of the calculations shows that within the limits of calculation accuracy, in all 
cases the Onsager reciprocity relationship (4) is satisfied. This condition has not been 
imposed on the solution earlier, its fulfillment must be treated as an additional criterion 

of the accuracy of these derived solutions. 

We will dwell briefly on the physical sense of each kinetic coefficient. The coefficient 
App corresponds to the transport of mass under the action of the pressure drop, ATT corresponds 
to the transfer of heat as a consequence of the temperature difference, and ApT corresponds 
to the transfer of mass as a result of the temperature drop. The coefficient ATp can be 
ascribed to the transfer of heat that is due to the pressure drop and, according to (4), 
is equal to ApT. Figure 2 shows the kinetic coefficients as functions of the ~ number in 
graphic representation. All of the coefficients depend significantly on the channel length. 
The flows of mass through the lateral cross section of the channel are of practical interest, 
and these can be determined in the following manner: 
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O~ (x) = j" u[(x, y) By, 
--l/= 
1/~ 

(x) = . I (x ,  y) ey. 

Figures 3 and 4 show the mass flows Gp and G T as functions of the reciprocal Knudsen number 
6 for various channel lengths in the entry and central sections. We can see that with an 
increase in channel length there is an increase in that fraction of the gas absorbed at 
the walls of the channel. With an increase in the 6 number the mass flow generated by the 
pressure drop Gp increases, while that generated by the temperature drop G T diminishes. 

In this study we have also calculated the pressure and temperature fields. We found 
that the temperatures of the wall and of the gas near the walls are different from each 
other. This phenomenon is referred to as a temperature discontinuity and with small 6 makes 
itself apparent to a greater extent. We have also noted that the pressure of the gas 
near the wall differs from the pressure of the saturated vapor at the temperature of the 
wall, i.e., on a level with the temperature discontinuity we have also a pressure digcon- 
tinuity, which disappears in the viscous regime. 

Let us examine the phenomenon of the thermomolecular pressure difference. Let the 
vessels which connect the channel exhibit sufficiently large, but finite, volumes. ]f vari- 
ious temperatures T I and T 2 are maintained in the vessels, in addition to the flow oI heat, 
a mass flow G T arises within the system, and this is directed out of the "cold" vessel into 
the "hot" vessel. Since an absence of discharge is assumed within these vessels, this flow 
of mass leads to an increase in the pressure in the "hot" vessel and to a reduction Jn pres- 
sure in the "cold" vessel. In turn, this will result in a mass flow Gp in the opposite 
direction. If the system reaches steady state with the passage of time, the pressures PI 
and P2 in the vessels will be related to the temperatures by the relationship 

& _(Tx lv" 
P= \ T= / (5) 

This effect is known as the thermomolecular pressure difference (TPD) [8]. In this case, 
the concept is generalized to the case in which the nonpenetration condition in the channel 
is violated. The TPD exponent y is found from the condition that the total mass flo~ in 
each vessel is equal to zero: 

.fev + . ey = o. ( 6 ) 
--~!/2 " ~ 1 _  2 . ' 'x=O; L 

Let us note that for a steady state it is sufficient to satisfy this relationship only for 
a single vessel, since in view of the symmetry of the flow field for the second vessel it 
will be satisfied automatically. In this case this condition may be violated for other 
sections of the channel. An interesting situation may arise in the absence of symmetry, 
when condition (6) for both of the vessels is simultaneously unfulfilled. In this case, 
the system never reaches the steady state, given that no provision is made for the required 
removal or source of gas molecules in one of the vessels, since otherwise the pressure 
in the system will constantly increase or diminish. 

Considering the smallness of the differences in pressure and temperature, for the TPD 
exponent we obtain the following expression from (5) and (6): 

- -  I / 2  x = O  
= - -  ;/2 

._.[/2 uPx dy lx=o 

The dependence of y on the 6 number is shown in Table i. In the free-molecular regime in 
a channel of any length y = 0.5, and in the intermediate regime y diminishes as the length 
of the channel increases. 
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NOTATION 

a, channel height; s channel length; L = s reduced channel length; r. : (x, y); P, 
pressure; T, temperature; m, molecule mass; v t (8kT/~m)Z/2 = , mean thermal velocity; f, 
distribution function; i, mean free path; k, Boltzmann constant; D, dynamic viscosity; c and 
, reduced velocities of molecules and gas; q , heat-flux density; Jk, thermodynamic flows; 

Aks kinetic coefficient; h, perturbation function; Xk, thermodynamic forces. Subscripts: 
x, y, longitudinal and transverse components. 
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STATIC PRESSURE MEASUREMENT ERRORS WHEN DRAINAGE ORIFICES ARE USED 

E. U. Repik and V. K. Kuzenkov UDC 533.6.071.08:531.787 

We present the results from an experimental study of the influence exerted by 
the characteristic dimensions of a drainage orifice on the static-pressure 
measurement error. 

Static pressure in a moving medium is usually measured by means of drainage orifices 
located on the streamlined surface. However, the presence of such orifices on the stream- 
lined surface unavoidably leads to the perturbation of the flow in the boundary layer near 
that orifice and, consequently, to a deviation in the measured static pressure from the 
true value. The size of the perturbation zone near the drainage orifice depends on the 
diameter (d) of the orifice. It was demonstrated in [i] that these perturbations are pro- 
pagated primarily through the thickness of the boundary layer and the thickness of the per- 
turbation zone in this case varied from d/10 to d/40. 

According to [2], the streamline adjacent-to the streamlined surface, as it descends 
into this drainage pore, leads to the appearance of a field of centrifugal forces, as a 
consequence of which the pressure within the hole exceeds the actual pressure. The insta- 
bility of the process involved in the formation of a system of vortices within the static- 
pressure hole also exerts its influence on the magnitude of the static pressure. In a num- 
ber of cases, it is possible for the Pitot effect to set in at the edge of this hole down- 
stream. When the stream is detached from the leading edge of the drainage orifice, the 
measured pressure (Pmeas) will be smaller than the true pressure (Ptru)- All of this may 
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